Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326476

RESUMO

BACKGROUND: Adverse environmental conditions during intrauterine life, known as fetal programming, significantly contribute to the development of diseases in adulthood. Fetal programming induced by factors like maternal undernutrition leads to low birth weight and increases the risk of cardiometabolic diseases. METHODS: We studied a rat model of maternal undernutrition during gestation (MUN) to investigate gene expression changes in cardiac tissue using RNA-sequencing of day 0-1 litters. Moreover, we analyzed the impact of lactation at day 21, in MUN model and cross-fostering experiments, on cardiac structure and function assessed by transthoracic echocardiography, and gene expression changes though qPCR. RESULTS: Our analysis identified specific genes with altered expression in MUN rats at birth. Two of them, Agt and Pparg, stand out for being associated with cardiac hypertrophy and fibrosis. At the end of the lactation period, MUN males showed increased expression of Agt and decreased expression of Pparg, correlating with cardiac hypertrophy. Cross-fostering experiments revealed that lactation with control breastmilk mitigated these expression changes reducing cardiac hypertrophy in MUN males. CONCLUSIONS: Our findings highlight the interplay between fetal programming, gene expression, and cardiac hypertrophy suggesting that lactation period is a potential intervention window to mitigate the effects of fetal programming. IMPACT: Heart remodeling involves the alteration of several groups of genes and lactation period plays a key role in establishing gene expression modification caused by fetal programming. We could identify expression changes of relevant genes in cardiac tissue induced by undernutrition during fetal life. We expose the contribution of the lactation period in modulating the expression of Agt and Pparg, relevant genes associated with cardiac hypertrophy. This evidence reveal lactation as a crucial intervention window for preventing or countering fetal programming.

3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769019

RESUMO

Inflammatory bowel disease (IBD) is an umbrella term for the chronic immune-mediated idiopathic inflammation of the gastrointestinal tract, manifesting as Crohn's disease (CD) or ulcerative colitis (UC). IBD is characterized by exacerbated innate and adaptive immunity in the gut in association with microbiota dysbiosis and the disruption of the intestinal barrier, resulting in increased bacterial exposure. In response to signals from microorganisms and damaged tissue, innate immune cells produce inflammatory cytokines and factors that stimulate T and B cells of the adaptive immune system, and a prominent characteristic of IBD patients is the accumulation of inflammatory T-cells and their proinflammatory-associated cytokines in intestinal tissue. Upon antigen recognition and activation, CD4 T-cells differentiate towards a range of distinct phenotypes: T helper(h)1, Th2, Th9, Th17, Th22, T follicular helper (Tfh), and several types of T-regulatory cells (Treg). T-cells are generated according to and adapt to microenvironmental conditions and participate in a complex network of interactions among other immune cells that modulate the further progression of IBD. This review examines the role of the CD4 T-cells most relevant to IBD, highlighting how these cells adapt to the environment and interact with other cell populations to promote or inhibit the development of IBD.


Assuntos
Linfócitos T CD4-Positivos , Doenças Inflamatórias Intestinais , Humanos , Mucosa Intestinal , Doenças Inflamatórias Intestinais/etiologia , Subpopulações de Linfócitos T , Inflamação , Citocinas
4.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675038

RESUMO

Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation with no exact known cause. Intestinal innate immunity is enacted by neutrophils, monocytes, macrophages, and dendritic cells (DCs), and innate lymphoid cells and NK cells, characterized by their capacity to produce a rapid and nonspecific reaction as a first-line response. Innate immune cells (IIC) defend against pathogens and excessive entry of intestinal microorganisms, while preserving immune tolerance to resident intestinal microbiota. Changes to this equilibrium are linked to intestinal inflammation in the gut and IBD. IICs mediate host defense responses, inflammation, and tissue healing by producing cytokines and chemokines, activating the complement cascade and phagocytosis, or presenting antigens to activate the adaptive immune response. IICs exert important functions that promote or ameliorate the cellular and molecular mechanisms that underlie and sustain IBD. A comprehensive understanding of the mechanisms underlying these clinical manifestations will be important for developing therapies targeting the innate immune system in IBD patients. This review examines the complex roles of and interactions among IICs, and their interactions with other immune and non-immune cells in homeostasis and pathological conditions.


Assuntos
Imunidade Inata , Doenças Inflamatórias Intestinais , Humanos , Linfócitos/patologia , Doenças Inflamatórias Intestinais/patologia , Inflamação/patologia , Sistema Imunitário/patologia , Mucosa Intestinal/patologia
5.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299236

RESUMO

Inflammatory bowel disease (IBD) is a heterogeneous state of chronic intestinal inflammation of unknown cause encompassing Crohn's disease (CD) and ulcerative colitis (UC). IBD has been linked to genetic and environmental factors, microbiota dysbiosis, exacerbated innate and adaptive immunity and epithelial intestinal barrier dysfunction. IBD is classically associated with gut accumulation of proinflammatory Th1 and Th17 cells accompanied by insufficient Treg numbers and Tr1 immune suppression. Inflammatory T cells guide innate cells to perpetuate a constant hypersensitivity to microbial antigens, tissue injury and chronic intestinal inflammation. Recent studies of intestinal mucosal homeostasis and IBD suggest involvement of innate lymphoid cells (ILCs). These lymphoid-origin cells are innate counterparts of T cells but lack the antigen receptors expressed on B and T cells. ILCs play important roles in the first line of antimicrobial defense and contribute to organ development, tissue protection and regeneration, and mucosal homeostasis by maintaining the balance between antipathogen immunity and commensal tolerance. Intestinal homeostasis requires strict regulation of the quantity and activity of local ILC subpopulations. Recent studies demonstrated that changes to ILCs during IBD contribute to disease development. A better understanding of ILC behavior in gastrointestinal homeostasis and inflammation will provide valuable insights into new approaches to IBD treatment. This review summarizes recent research into ILCs in intestinal homeostasis and the latest advances in the understanding of the role of ILCs in IBD, with particular emphasis on the interaction between microbiota and ILC populations and functions.


Assuntos
Imunidade Inata/imunologia , Mucosa Intestinal/metabolismo , Linfócitos/metabolismo , Imunidade Adaptativa/imunologia , Animais , Colite , Colite Ulcerativa , Doença de Crohn , Trato Gastrointestinal , Homeostase/fisiologia , Humanos , Tolerância Imunológica , Inflamação , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/fisiopatologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Linfócitos/imunologia , Microbiota , Células Th17
6.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854281

RESUMO

Nuclear envelope lamin A/C proteins are a major component of the mammalian nuclear lamina, a dense fibrous protein meshwork located in the nuclear interior. Lamin A/C proteins regulate nuclear mechanics and structure and control cellular signaling, gene transcription, epigenetic regulation, cell cycle progression, cell differentiation, and cell migration. The immune system is composed of the innate and adaptive branches. Innate immunity is mediated by myeloid cells such as neutrophils, macrophages, and dendritic cells. These cells produce a rapid and nonspecific response through phagocytosis, cytokine production, and complement activation, as well as activating adaptive immunity. Specific adaptive immunity is activated by antigen presentation by antigen presenting cells (APCs) and the cytokine microenvironment, and is mainly mediated by the cellular functions of T cells and the production of antibodies by B cells. Unlike most cell types, immune cells regulate their lamin A/C protein expression relatively rapidly to exert their functions, with expression increasing in macrophages, reducing in neutrophils, and increasing transiently in T cells. In this review, we discuss and summarize studies that have addressed the role played by lamin A/C in the functions of innate and adaptive immune cells in the context of human inflammatory and autoimmune diseases, pathogen infections, and cancer.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Lamina Tipo A/metabolismo , Células Mieloides/metabolismo , Imunidade Adaptativa , Animais , Citocinas/metabolismo , Humanos , Imunidade Inata , Filamentos Intermediários/metabolismo
8.
Neoplasia ; 21(11): 1073-1084, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31734628

RESUMO

The role of prostaglandin (PG) F2α has been scarcely studied in cancer. We have identified a new function for PGF2α in ovarian cancer, stimulating the production of Prostate Transmembrane Protein, Androgen Induced 1 (PMEPA1). We show that this induction increases cell plasticity and proliferation, enhancing tumor growth through PMEPA1. Thus, PMEPA1 overexpression in ovarian carcinoma cells, significantly increased cell proliferation rates, whereas PMEPA1 silencing decreased proliferation. In addition, PMEPA1 overexpression buffered TGFß signaling, via reduction of SMAD-dependent signaling. PMEPA1 overexpressing cells acquired an epithelial morphology, associated with higher E-cadherin expression levels while ß-catenin nuclear translocation was inhibited. Notwithstanding, high PMEPA1 levels also correlated with epithelial to mesenchymal transition markers, such as vimentin and ZEB1, allowing the cells to take advantage of both epithelial and mesenchymal characteristics, gaining in cell plasticity and adaptability. Interestingly, in mouse xenografts, PMEPA1 overexpressing ovarian cells had a clear survival and proliferative advantage, resulting in higher metastatic capacity, while PMEPA1 silencing had the opposite effect. Furthermore, high PMEPA1 expression in a cohort of advanced ovarian cancer patients was observed, correlating with E-cadherin expression. Most importantly, high PMEPA1 mRNA levels were associated with lower patient survival.

9.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653058

RESUMO

Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.


Assuntos
Imunidade Adaptativa , Aterosclerose/patologia , Imunidade Inata , Aterosclerose/epidemiologia , Aterosclerose/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...